Characterization of a Bivalent Vaccine Capable of Inducing Protection Against Both Ebola and Cross-clade H5N1 Influenza in Mice.
نویسندگان
چکیده
BACKGROUND Ebola virus (EBOV) is a lethal pathogen that causes up to 90% mortality in humans, whereas H5N1 avian influenza has a 60% fatality rate. Both viruses are considered pandemic threats. The objective was to evaluate the protective efficacy of a bivalent, recombinant vesicular stomatitis virus vaccine expressing both the A/Hanoi/30408/2005 H5N1 hemagglutinin and the EBOV glycoprotein (VSVΔG-HA-ZGP) in a lethal mouse model of infection. METHODS Mice were vaccinated 28 days before or 30 minutes after a lethal challenge with mouse-adapted EBOV or selected H5N1 influenza viruses from clades 0, 1, and 2. Animals were monitored for weight loss and survival, in addition to humoral and cell-mediated responses after immunization. RESULTS A single VSVΔG-HA-ZGP injection was efficacious when administered 28 days before a homologous H5N1 and/or mouse-adapted EBOV challenge, as well as a heterologous H5N1 challenge. Postexposure protection was only observed in vaccinated animals challenged with homologous H5N1 and/or mouse-adapted EBOV. Analysis of the adaptive immune response postvaccination revealed robust specific T- and B-cell responses, including a potent hemagglutinin inhibition antibody response against all H5N1 strains tested. CONCLUSIONS The results highlight the ability of vesicular stomatitis virus-vectored vaccines to rapidly confer protection against 2 unrelated pathogens and stimulate cross-protection against H5N1 influenza viruses.
منابع مشابه
A Recombinant Vaccine of H5N1 HA1 Fused with Foldon and Human IgG Fc Induced Complete Cross-Clade Protection against Divergent H5N1 Viruses
Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc),...
متن کاملMultiple-Clade H5N1 Influenza Split Vaccine Elicits Broad Cross Protection against Lethal Influenza Virus Challenge in Mice by Intranasal Vaccination
BACKGROUND The increase in recent outbreaks and unpredictable changes of highly pathogenic avian influenza (HPAI) H5N1 in birds and humans highlights the urgent need to develop a cross-protective H5N1 vaccine. We here report our development of a multiple-clade H5N1 influenza vaccine tested for immunogenicity and efficacy to confer cross-protection in an animal model. METHODOLOGY/PRINCIPAL FIN...
متن کاملEfficacy of Single Dose of a Bivalent Vaccine Containing Inactivated Newcastle Disease Virus and Reassortant Highly Pathogenic Avian Influenza H5N1 Virus against Lethal HPAI and NDV Infection in Chickens
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific p...
متن کاملEmulsified Nanoparticles Containing Inactivated Influenza Virus and CpG Oligodeoxynucleotides Critically Influences the Host Immune Responses in Mice
BACKGROUND Antigen sparing and cross-protective immunity are regarded as crucial in pandemic influenza vaccine development. Both targets can be achieved by adjuvantation strategy to elicit a robust and broadened immune response. We assessed the immunogenicity of an inactivated H5N1 whole-virion vaccine (A/Vietnam/1194/2004 NIBRG-14, clade 1) formulated with emulsified nanoparticles and investig...
متن کاملCross-Clade Protective Immune Responses to Influenza Viruses with H5N1 HA and NA Elicited by an Influenza Virus-Like Particle
BACKGROUND Vaccination is a cost-effective counter-measure to the threat of seasonal or pandemic outbreaks of influenza. To address the need for improved influenza vaccines and alternatives to egg-based manufacturing, we have engineered an influenza virus-like particle (VLP) as a new generation of non-egg or non-mammalian cell culture-based candidate vaccine. METHODOLOGY/PRINCIPAL FINDINGS We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of infectious diseases
دوره 212 Suppl 2 شماره
صفحات -
تاریخ انتشار 2015